On the hyperbolic Pascal pyramid

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hyperbolic Pascal pyramid

In this paper we introduce a new type of Pascal’s pyramids. The new object is called hyperbolic Pascal pyramid since the mathematical background goes back to the regular cube mosaic (cubic honeycomb) in the hyperbolic space. The definition of the hyperbolic Pascal pyramid is a natural generalization of the definition of hyperbolic Pascal triangle ([2]) and Pascal’s arithmetic pyramid. We descri...

متن کامل

Hyperbolic Pascal simplex

In this article we introduce a new geometric object called hyperbolic Pascal simplex. This new object is presented by the regular hypercube mosaic in the 4-dimensional hyperbolic space. The definition of the hyperbolic Pascal simplex, whose hyperfaces are hyperbolic Pascal pyramids and faces are hyperbolic Pascals triangles, is a natural generalization of the definition of the hyperbolic Pascal...

متن کامل

Fibonacci words in hyperbolic Pascal triangles

The hyperbolic Pascal triangle HPT 4,q (q ≥ 5) is a new mathematical construction, which is a geometrical generalization of Pascal’s arithmetical triangle. In the present study we show that a natural pattern of rows of HPT 4,5 is almost the same as the sequence consisting of every second term of the well-known Fibonacci words. Further, we give a generalization of the Fibonacci words using the h...

متن کامل

ON THE SHEARLET TRANSFORM USING HYPERBOLIC FUNCTIONS

In this paper, we focus on the study of shearlet transform which isdened by using the hyperbolic functions. As a result we check an admissibilitycondition such that implies the reconstruction formula. To this end, we will usethe concept of the classical shearlet, which indicates the position and directionof a singularity.

متن کامل

Difference Methods for Infinite Systems of Hyperbolic Functional Differential Equations on the Haar Pyramid

For any metric spaces X and Y we denote by C(X,Y ) the class of all continuous functions from X into Y . Let N and Z denote the sets of natural numbers and integers respectively. Denote by S the set of all real sequences p = (pk)k∈N. For p = (pk)k∈N ∈ S, p̄ = (p̄k)k∈N ∈ S we write |p| = (|pk|)k∈N and p ≤ p̄ if pk ≤ p̄k for k ∈ N. For p = (p (m) k )k∈N ∈ S , m ∈ N and p = (pk)k∈N ∈ S we put lim m→∞ ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry

سال: 2016

ISSN: 0138-4821,2191-0383

DOI: 10.1007/s13366-016-0293-7